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Abstract

The ability to trace multicast paths is currently available in
the Internet by means of IGMP MTRACE packets. We in-
troduce Tracer, the first protocol that organizes the receivers
of a multicast group deterministically into a logical tree
structure while maintaining exact packet-loss correlation for
local error recovery, and without requiring any changes to
existing multicast routing protocols. Tracer uses MTRACE
packets in IGMP to allow a receiver host to obtain its path
to the source of a multicast group. Receivers use the mul-
ticast path information to determine how to achieve local
error recovery and effective congestion control. We compare
the tracing approach with prior mechanisms that attempt
local recovery. Results of measurements carried out over the
CAIRN illustrate the fact that tracing multicast paths is an
effective tool to organize receivers based on their packet-loss
correlation.

1 Introduction

As support in the Internet for multicast, or one-to-many,
communication between a group of hosts continues to grow,
applications taking advantage of the savings of multicast
transmissions increase in number. Such applications include
server-initiated “push” technology, shared whiteboards and
multimedia conferencing tools, and distributed interactive
simulation environments. While many unicast-based net-
worked applications have taken reliable data transmission
for granted, reliable transmission of multicast data is still
an unresolved issue.

What prevents the wide-scale deployment of reliable mul-
ticast protocols is the acknowledgment-implosion problem:
as the number of receivers expecting reliable transmission
of data multicast from a source increases, the source and
the network become overwhelmed when receivers directly
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contact the source with either negative acknowledgments
(Nacks) requesting lost data and the retransmissions that
ensue during packet-loss, or positive acknowledgments (Acks)
of correctly received data. Producing a reliable multicast
protocol that scales well with the number of receivers, in
terms of network traffic and the processing required of the
source and receivers, has proven to be a challenge, as demon-
strated by the number of approaches taken in the past (e.g.,
[17, 5, 23, 9, 11, 7, 15]). Moreover, as protocols for multi-
cast error control are developed, mechanisms must also be
developed for multicast congestion control [6, 13, 3], simi-
lar to those developed for such unicast reliable protocols as
TCP [8].

One technique that has been used in the past by reli-
able multicast protocols is local recovery: designating one
or more hosts other than the source (usually one of the re-
ceivers) as another source of retransmissions when the net-
work resources permit it. For instance, the Scalable Re-
liable Multicast (SRM) [5] protocol allows any receiver to
respond to a Nack, and the Reliable Multicast Transport
Protocol (RMTP) [17] appoints “designated receivers”, or-
ganized into a tree structure, for sending retransmissions to
portions of the receiver set. Organizing the receivers into a
tree structure, where each receiver is responsible for a set
number of other receivers, has been shown via an analysis
model to be the most scalable choice among several meth-
ods [19, 10]. Intuitively, reliable multicast protocols that
organize trees of receivers for local recovery work well be-
cause they distribute the cost of processing Acks, Nacks,
and retransmissions, which reduces the load on the source
and the network. The question is how to establish such an
organized local recovery hierarchy efficiently.

We present the first method for organizing multicast re-
ceivers deterministically to ensure that Acks and Nacks are
always sent to the best receivers, in terms of packet-loss
correlation or a combination of performance considerations.
Section 2 discusses past techniques used to organize the re-
ceiver set for local recovery, and considers the limitations
of using each technique alone and in combination. Sec-
tion 3 introduces a novel approach for organizing receivers—
tracing the path from the source—heretofore overlooked as
an immediately available tool built into multicast routers.
Our protocol for organizing the receiver set, called Tracer,
is based on tracing as a prediction of packet-loss correla-
tion. We view Tracer as a protocol component for use in
reliable multicast or multicast congestion control protocols.
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Section 3 also discusses small local improvements to routers
that would allow subtree multicasting, or subcasting, which
would greatly improve the efficiency of reliable multicast
protocols, and shows why Tracer is particularly poised to
take advantage of these improvements. Section 4 details
how Tracer can be used as a component of larger multicast
protocols. In particular, we consider the Reliable Multicast
Transport Protocol (RMTP) [17], the Structure-Oriented
Resilient Multicast Protocol (STORM) [22], and De Lucia
and Obraczka’s multicast congestion control scheme [3] as
examples. Section 5 analyzes data collected on packet loss
between several hosts on the Collaborative Advanced Inter-
net Research Network (CAIRN), a real network, in order
to illustrate how well tracing assists in predicting packet-
loss correlation, and therefore receiver organization. Finally,
Section 6 presents our conclusions and how to download a
public domain implementation of Tracer that we have built.

2 Motivation

Much research in multicast error-control has converged to
the notion of local aggregation of feedback and local recov-
ery when the network permits it, which implies the definition
of local groups of receivers. Current research in congestion
control also seems to require a notion of groups, such that
all members within a group have the same state of conges-
tion or packet-loss correlation. The dynamic organization
of group members is a crucial component of both error con-
trol and congestion control, and several methods have been
used in the past for both approaches. These include mea-
suring propagation delay or hop counts, exchanging packet-
loss information, and providing router support at multicast
routers. In this section, we consider each method and their
limitations or why they may not be applicable, even in com-
bination.

For clarity, we refer to receivers in error-control protocols
sending Acks or Nacks as requesters and receivers that may
respond with retransmissions as retransmitters. The set of
retransmitters does not exclude the source. We may also
think of a parent and child relationship between retransmit-
ter and requester. The rest of this section examines existing
approaches to grouping receivers while trying to preserve
packet-loss correlation.

2.1 Measuring hop count

One of the main goals of selecting a retransmitter for each
requester of a reliable multicast protocol is minimizing the
delay in receiving retransmissions. For example, by measur-
ing the number of routers on the path between two hosts,
i.e., the hop count, it is thought that the closest retransmit-
ter (and if possible a retransmitter in the same administra-
tive domain as the requester) can be located. For example,
the Tree-based Multicast Transport Protocol (TMTP) [23]
builds a tree of receivers by finding the closest retransmitter
to each receiver based on hop counts between hosts. Fig-
ures 1 and 2 illustrate a multicast routing tree and three
problems that can arise by using hop count as a measure in
the way it is used in TMTP. First, in Figure 1, consider a
host attached to router E which must choose between two
retransmitters attached to routers C' and G: both are the
same number of hops away. The host attached to C is the
better choice because data received at G must have passed
through E already, and also because C'is closer to the source
than G, and generally that means there is less chance for
packet loss. Furthermore, the host at C will probably de-
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Figure 1: Problems with using hop count.
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Figure 2: Possible looping from using hop counts.

tect the loss before G because it is closer to the source and
expects the packet sooner; the host at C' may then request
the retransmissions before the host at G, and be able to
service the host at E’s request sooner. However, using hop
count as a metric in this manner cannot determine whether
a host at C is a better retransmitter than a host at G.

Figure 1 also illustrates a second problem that may arise
in using hop counts to select retransmitters. The host at E
must choose between two retransmitters attached to routers
C and D. Router D may lie behind a 300-baud modem, but
such information is not available by hop counts (but may be
revealed by propagation delay or packet-loss statistics).

Finally, using hop count as the only measure of packet-
loss correlation is subject to a looping condition, as illus-
trated by Figure 2. A host attached to router C may choose
a retransmitter attached to router D; the same host at D
may choose a retransmitter attached to router E. A loop
of retransmitters forms if the host at E chooses the host at
C as its retransmitter. If the hop count from the source
is used, rather than between nodes, then the loop could be
prevented, for example, if nodes were required to find re-
transmitters that lie closer to the source than themselves.

The Reliable Multicast Transport Protocol (RMTP) [17]
also builds a tree of retransmitters. Each receiver selects the
closest retransmitter based on propagation delay. However,
the tree of retransmitters must be picked by administra-
tors to ensure that a loop-free hierarchy of retransmitters is
formed.

In summary, retransmitters chosen by hop count alone do
not provide any sense of relative positioning between a group
of nodes, do not protect against looping if used incorrectly,
and do not provide any information regarding link speed.

2.2 Measuring propagation delay

Another method used to reduce the delay in receiving a re-
transmission is to send requests to the closest node in terms
of propagation delay: the smaller the propagation delay to
the retransmitter, the sooner the retransmission will arrive.
There are a number of caveats for using propagation delay,
which we discuss here.

First of all, propagation delays on the Internet can be
very dynamic and should only be used as an estimate, not



Figure 3: Measuring multicast distances incorrectly with
unicast propagation delay. Multicast paths are shown with
gray arrows.

as an exact measure of distance between nodes. As the
distances among the hosts decreases, propagation delay be-
comes an inaccurate measure to determine where hosts lie
relative to each other and the source.

Second, the network resources used in measuring delay
must be considered. Measuring the delay between two ar-
bitrary hosts does not cost much by itself; however, if a
protocol requires every host to know the propagation delay
between itself and the source, the cost becomes unscalable.
For example, SRM requires that all receivers measure the
roundtrip delay between each other. Even if hierarchical
structures are introduced in the exchange of session mes-
sages with delay information, the accuracy of such infor-
mation degrades as the scalability of session messages is in-
creased by aggregating delay information [20]. Alternatively,
the clocks of all hosts in the session could be synchronized,
e.g., by using a protocol such as the Network Time Protocol
(NTP) [12]; however, propagation delay between hosts must
still be measured.

Finally, not all Internet routers are capable of routing
multicast packets. This may be the case for a long time
in the future, because even as the multicast backbone in-
creases, many network domain administrators purposely for-
bid multicast traffic through certain routers. The unicast
path between two hosts is not necessarily the same as the
multicast path between the same hosts. Therefore, measur-
ing propagation delay between two hosts via unicast paths
does not accurately measure the delay between the two on
a multicast tree. If a protocol depends on delay to give
relative positions on the multicast tree, then the protocol
must measure multicast propagation delay in order to find
the closest server. In other words, if unicast propagation
delay is the measure, unicast retransmissions must be sent
(as in STORM [22]). Similarly, if multicast retransmissions
are to be sent from the closest server, then the multicast
propagation delays must be measured (as in SRM [5]).

If a unicast-measured retransmitter uses multicasts to
send the retransmissions, then the retransmitter might not
be the closest host on the multicast tree, or even one that
lies between the requester and the source (in other words,
even the source may have been a better choice). Figure 3
illustrates that using a roundtrip unicast propagation delay
can lead to choosing by mistake the farthest host on the
multicast tree as the closest. Notice that the unicast path
from the router attached to the source to host at router
E (through router Z) is shorter than the unicast path from
host attached to the router at C to router E (through routers
X and Y). However, retransmissions multicast from C' will
reach E before those multicast from the source’s router do,
and unicast measurements will not detect this.

2.2.1 Multicasting or unicasting retransmissions

Regardless of what metric is used to choose the retransmit-
ter, deciding between unicast retransmissions and multicast
transmissions introduces its own set of problems. Unicast
retransmissions trickle down the tree from retransmitter to
retransmitter (e.g., the STORM protocol unicasts retrans-
missions despite its emphasis on deadline-oriented data);
multicast retransmissions have been shown to lower aver-
age packet delay from reliable transmission [18]. Further-
more, unicast retransmissions are a waste of bandwidth;
sending multiple copies of the same data is inefficient, es-
pecially since a multicast routing tree already connects the
receivers. To make up for the delay from unicast retrans-
mission, STORM allows nodes to change parents if the delay
in receiving the retransmissions is too long, even though a
parent may be waiting for the retransmission from a grand-
parent. As congestion and packet loss increase, the orga-
nization of receivers may degrade into a scenario in which
every host sends Nacks directly to the source.

On the other hand, multicasting retransmissions can also
waste bandwidth and processing resources if the packets
reach receivers that do not need the retransmitted data.
Therefore, multicast retransmissions may save resources, but
only if the receivers that require the data are the only re-
cipients. Unfortunately, restricting the scope of a multi-
cast packet using existing multicast technology can only be
achieved by either forming and maintaining a new multicast
group (which is costly), or by reducing the number of routers
a packet may traverse by setting the time-to-live (TTL) field
present in all IP packets to an explicit limit. Reducing the
TTL of a multicast packet is crude as it lacks direction, i.e.,
packets are still disseminated in all directions from the re-
transmitter.

Another issue with multicasting retransmissions is that
only one retransmitter should multicast data to the same set
of receivers. However, this is not the case in SRM, which
allows any receiver to answer a request after waiting for a
backoff interval to check if other hosts have already acted.
The advantage of multicasting retransmissions, as in SRM, is
that some hosts may get retransmissions before they request
them. However, because SRM uses a probabilistic approach,
multiple retransmitters may act on a request.

In summary, multicasting retransmissions can be more
efficient than unicasting retransmissions, provided that only
one retransmitter responds, and that the scope of the re-
transmissions is only to receivers that require the data. This
calls for a deterministic approach to multicast retransmis-
sions, as well as the ability to accomplish subcasting, i.e.,
multicasting to a specific subset of a multicast group.

2.3 Using router support

Both the Reliable Multicast Architecture (RMA) [9] and
the Error Control Scheme for Large-Scale Multicast Appli-
cations (ECSLMA) [16] organize the receiver set of a mul-
ticast session into a tree by adding extra functionality to
multicast routers. Rather than storing data at the routers of
a multicast tree, the two protocols actually provide special
routing support that can be exploited for the distribution
of acknowledgments and retransmissions needed in reliable
multicast protocols.

RMA and ECSLMA have two advantages over approaches
that use end-to-end techniques: the receivers’ Nacks and
Acks are automatically routed to a nearby receiver in a loop-
free tree structure, and retransmissions can be sent to a
subtree of the primary multicast tree, which is quicker and



-9 (o)
® @4@4@

Figure 4: For a host attached at router E, host attached to
router D are directly acceptable; hosts at router C are indi-
rectly acceptable; and hosts at router X are unacceptable.

more efficient. RMA and ECSLMA do not require expand-
ing ring searches to coordinate the receivers of the session,
which virtually all reliable multicast protocols to date use.

While the approaches taken by RMA and ECSLMA are
very similar, the differences lie in their operation. We detail
the mechanisms used in RMA briefly because Tracer specif-
ically adapts the mechanisms used in RMA. The differences
in operation between RMA and ECSLMA mainly concern
issues that Tracer solves in other ways, and are not of con-
cern here; for example, working over shared-tree multicast
protocols (such as CBT and OCBT [1, 21]), and avoiding
sending redundant retransmissions to some receivers.

RMA is built on the concept we call acceptability, which
considers whether a retransmitter is a good choice for a re-
quester based on what percentage of the path they share
from the source. If two hosts share a common path on the
routing tree, then there exists a packet-loss correlation be-
tween the two hosts for any packets lost on the common
path (see Section 5). More formally, the relationship be-
tween a retransmitter and a requester is either unacceptable
(they share no common path from the source), or one of the
following [9]:

Directly acceptable: The relationship between a receiver
A and its retransmitter B is directly acceptable if the
router attached to B lies on the path from the source
to the router attached to A.

Indirectly acceptable: The relationship between a receiver
A and its retransmitter B is indirectly acceptable if
the routers attached to B and A share a common path
from the source, and the router attached to B is closer
to the source than the router attached to A.

Figure 4 illustrates all three cases. For a host attached
at router E, hosts attached to router D are directly accept-
able retransmitters because packets must travel through D
before reaching E. For the same hosts attached to router
E, hosts at router C are indirectly acceptable retransmitters
because a common path (Src — A — B) is shared between
C and E, and C is closer to the source than E. All hosts
attached to router X are unacceptable retransmitters since
packets from the source to X travel a completely different
path than those traveling to E. (Note that additional fac-
tors can influence the choice of parent in RMA, ECSLMA,
and Tracer, including perceived packet loss.)

The advantage of organizing the receiver set into a tree
such that every retransmitter-requester relationship is ac-
ceptable, as in RMA, is that all receivers that are down-
stream on the retransmitter-requester tree are also down-
stream on the multicast routing tree [9]. For example, in
Figure 4, if C' is the retransmitter for D, and D is the re-
transmitter for E, multicasts from C towards D (i.e., trav-
eling from the common router B and away from the source)
will reach all of D’s children, and not hosts that are not
D’s children. We refer to a transmission to a portion of the

multicast tree, e.g., starting B and away from the source (or
root) and the incoming interface, as a subcast.

While the approach of requiring acceptability is good,
RMA and ECSLMA require several additions to the pro-
tocols used at multicast routers. In contrast, Tracer also
builds a completely acceptable tree of receivers, but with-
out requiring any changes to routers. Just like RMA and
ECSLMA, Tracer is able to identify the specific router from
which subcast retransmissions should be sent.

2.4 Exchanging data of observed performance

A novel approach to organizing the receiver set is considered
by the STORM [22] protocol, where receivers pick the best
retransmitter based on observed performance, propagation
delay, and buffer size. Each potential retransmitter is evalu-
ated based on what percentage of the packets can be received
at the requester before the buffer runs out. Specifically, each
potential retransmitter is asked to determine the percentage
of packets it has received correctly from the source within
time t + B — d, where ¢ is the average delay from the source
to the requester, B is the buffer size at the requester (in
time units), and d is the unicast propagation delay between
requester and retransmitter.

The STORM resilient multicast paradigm works well,
and includes a labeling system to avoid looping of retrans-
mitters. However, the STORM receiver set organization is
not set up properly to do efficient multicast retransmissions
(via either subcasts or separate multicast groups). Mul-
ticast retransmissions do not work with STORM, because
measurements are performed using unicast paths, and there
is nothing about measuring hop count, propagation delay, or
packet-loss correlation that deterministically ensures an ac-
ceptable acknowledgment tree; nor can any of those heuris-
tics discover the name of the router to send the subcast
retransmission from.

3 Tracing

We propose a new protocol, called Tracer, which relies upon
a function built into all IP multicast routers running the
Internet Group Management Protocol (IGMP) [4]. IGMP
specifies a special packet called “MTRACE” (multicast trace)
that allows any host to trace its path to the source (root)
of a multicast routing tree for a specified number of hops.
The commonly used Unix tool Mtrace is also based on the
MTRACE function.!

Unlike hop counts, propagation delays, or exchanging
performance statistics, tracing allows receivers to definitively
discover if they share a common path from the source by
comparing path-strings returned by MTRACE queries. Ac-
cordingly, tracing can be used by receivers to create accept-
able relationships between retransmitters and requests, just
as in RMA. But, unlike the mechanisms used in RMA, trac-
ing is available without modification of routers.

Figure 5 illustrates the MTRACE process. Because each
multicast router knows the interface that leads to the source
of the tree, the MTRACE query traverses each router in
receiver-to-source order, recording the path in the data por-
tion of the packet. Once the source is reached, the packet
is sent back to the receiver as a standard unicast packet.
Hosts that share a common path will see common network
performance characteristics, as we show in Section 5.

'The source code for Mtrace can be found at
ftp://ftp.isi.edu/mbone/mtrace.tar.z
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Figure 5: Routers D and F send an MTRACE along the
reverse path to the source. The source’s router returns the
recorded path-string via unicast.

Tracing provides requester and retransmitter with the
ezact name of the last router common to both, which en-
ables deterministic grouping of receivers with exact packet-
loss correlation, and is precisely the missing information re-
quired to do subcasting. Propagation delay and hop counts
cannot provide this information, which is possibly why, al-
though sometimes mentioned, subcasting has not been ex-
plored before now as a practical option. The introduction of
subcasting to internet routers would require minimal local
modification—mno additional routing protocols or signaling
are required. In fact, in order to perform subtree multicas-
ting, all a router needs to do is send the packet out on all
multicast interfaces appropriate for the group, except the
interface leading to the source and the interface over which
the subcast packet arrived on.

In the absence of a subcasting interface, the groups of re-
ceivers organized by Tracer can still form separate multicast
groups.

Tracer allows only acceptable relationships between re-
transmitters and requesters, and because the last common
router between them is known, Tracer is able to do effi-
cient multicast retransmissions once subcast transmissions
become available in the Internet.

Tracer has four stages during which a tree of retransmit-
ters is constructed and maintained by the host participating
in a multicast group: path discovery, path advertisement,
parent selection, and maintenance.

The goal of the tree building algorithm is for each re-
ceiver to pick a retransmitter that shares a common path
to the source, and is closer to the source. The choice of re-
ceivers is augmented by such performance measures as prop-
agation delay on the multicast routing tree and packet loss.

3.1 Path Discovery and Advertisement

Path discovery begins at each receiver by sending a unicast
MTRACE message toward the source’s router. When the
unicast response to the MTRACE message returns, each re-
ceiver then knows its path-string to the source. A path-string
is a list of interfaces passed through by packets transmitted
by the source to the receiver for a multicast group. Figure 5
illustrates this process.

Once the path-string is known, path advertisement be-
gins: each receiver multicasts a PATH_ADV message adver-
tising its path-string, illustrated in Figure 6. We refer to
such hosts as advertisers. Path advertisements also include
the latest packet-loss statistics, as well as a timestamp. Ad-
vertisement is performed as an expanding ring search (ERS):
the multicast is sent with a limited hop count at first, and if
no response is received, the advertisement is sent again with
a larger hop count. The maximum value of the ERS should
not be larger than the hop count to the source (the explicit

Figure 6: Path advertisement by the host attached to router
F via ERS. The source, and hosts attached to routers C' and
D answer in this example.

hop count can be derived from the path-string), but because
of the path asymmetries between receivers communicating
via source-based multicast routing trees, this should not be
a hard limit. If the route taken by the advertiser’s multi-
cast is different from the source’s multicast path, it is not
a problem because only the path strings (and packet loss)
are compared, not round trip times or hop counts between
receivers on asynchronous paths.

Multicasting the advertisement, even as an ERS, is inef-
ficient. However, without additional router support, there is
no other way for receivers to discover each other’s existence
in the multicast group. ERS by itself lacks the notion of
directionality and hence simply using ERS may lead to the
choice of a parent that is downstream from the child (See
section 2.1). Tracer, on the other hand, combines ERS with
path-strings to obtain a precise idea of direction. Thus,
Tracer will never choose a parent that is farther from the
source than the child is from the source.

The fundamental difference in the way Tracer uses ERS
with respect to other protocols is that Tracer uses ERS to
advertise its selection criteria, while previous protocols use
ERS as an integral part of the selection criteria (e.g., [5, 23]).

Upon reception of another host’s PATH_ADV message,
a receiver must decide whether it can respond as a will-
ing parent, based on the acceptability definition. A re-
ceiver should only respond to it if it can serve as an ac-
ceptable parent, i.e., if the responder is closer to the source
(in terms of hop counts) and a common path exists. This
can be easily decided by comparing the path strings. Hosts
that do not wish to be retransmitters simply do not re-
spond to PATH_ADV messages. Willing parents send a
PATH_RESPONSE message unicast to the advertiser, which
includes the parent’s path string, latest packet-loss statis-
tics, and the PATH_ADV’s timestamp.

The timestamp is used to measure potential parents dur-
ing failsafe mode, described subsequently, or when deliver-
ing retransmissions in a timely manner is an issue (see Sec-
tion 4.2).

Once one or several PATH RESPONSEs are received,
an advertiser may begin parent selection. In fact, when
any PATH_ADV message is received, and if the advertiser is
determined to be an acceptable parent, then parent selection
may also begin.

Lost PATH_ RESPONSESs or PATH_ADVs are not a prob-
lem as the tree of receivers is repaired by the maintenance
stage of Tracer. Therefore, such messages do not need to be
sent reliably.

The procedure in C code used to compare two path-
strings appears in Figure 7. The function is_acceptable
returns 0 if the paths only match at the sender (and both
hosts are not the sender itself), or if no part of the paths
are in common. Otherwise, the number of hops between the
parent and child is returned: a positive value indicates that



int is_acceptable(u_long * pathA, int alen, u_long *
pathB, int blen, u_long sender) {
/* Shorter list searches the larger one */
unsigned long *shorter, *longer;
int slen, llen,i,j,sh,lg;

if (alen < blen ) {
shorter = pathA; slen=alen-1;
longer = pathB; llen=blen-1;
sh=1;1g=-1;
}
else {
shorter = pathB; slen=blen-1;
longer = pathA; llen=alen-1;
sh=-1;1g=1;
}
for (i=0;i<=slen;i++){
for (j=0;j<=llen;j++){
if (shorter[il==longer[jl) {
if (  (shorter[il==sender)
&% (shorter[0] != sender)
%& (longer[0] !=sender))
/* if a match is made only at the sender
and neither node is actually sender */
return(0);
else { /*if shorter is closer to common nodex/
if (1 <j)
return (sh*(j+i));
else
return (lg*(j+i));
}
}
}
}
return(0); /* no match found */

}

Figure 7: C code for determining the acceptability of two
hosts based on path-strings.

the host advertising pathA is an acceptable parent for the
host advertising pathB; a negative value indicates that the
host advertising pathB is an acceptable parent for the host
advertising pathA.

3.2 Parent selection

Parent selection is based on tracing and the packet-loss rate
of a potential parent. Upon receiving a response from any
potential parent, advertisers check if the potential parent
is a better choice than their current retransmitter, if any.
Whichever potential parent is closer on the multicast tree is
the best choice, and is determined by comparing the path
strings, barring packet loss, which we discuss below. An
IM_YOUR_CHILD message is sent to the best parent con-
firming the relationship, and the parent stores its child’s
path-string included in the IM_YOUR_CHILD message for
use later in the protocol. A NOT_YOUR_CHILD message
sent unicast to the old parent terminates the relationship.
Periodic IM_YOUR_PARENT messages must be sent from
a retransmitter to all its immediate children to ensure the
relationship is not broken by network partitions, or other
problems. If a child does not hear from its parent after
several periods, then path advertisement begins again. Ini-
tial IM_LYOUR_CHILD messages expect an immediate IM-
YOUR_PARENT message from the new parent, and if a
response is not heard from the parent after several retrans-
missions, the child reverts back to path advertisement.
Tracing provides a topology-based solution, but because
topology alone does not always yield the best solution, Tracer
also considers the latest packet-loss measurements of a re-
ceiver. In addition, the flexibility of not electing to be a
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Figure 8: Because router D is behind a lossy link, hosts at
F choose retransmitters at C.

parent is also provided as it helps in load balancing. Tracer
can also be extended to consider propagation delay, which
is useful for delay-oriented protocols, which we describe in
Section 4.2.

For example, if the closest receiver is behind a lossy or
slow link that is not part of the common path, a next-closest
ancestor may be chosen, as illustrated in Figure 8. A host at
F may choose between retransmitters at D or C; notice that
D is a closer router, but it is behind a lossy link and the host
at C is a better choice. Given that both hosts are acceptable
and that the host at D has a higher packet-loss rate than
the host at C, the host at F' may choose the host at C' as its
parent. In general, if an acceptable parent experiences more
losses than its child, the parent is probably behind a lossy
link that is not a part of the path that the parent and child
share from the source. In the worst case, every receiver will
wish to have the source be its retransmitter, or one retrans-
mitter may become overwhelmed with too many children.
To prevent this scenario, overloaded retransmitters may re-
ject new children who have closer choices. Because the path
strings of all children are known to a parent, when the load
becomes too high, grandchildren can be kicked out of the
group first with a NOT_YOUR_PARENT message. For ex-
ample, the host at C may reject the host at F’s request, and
force it to reply to the host at D.

3.3 Maintenance

The maintenance portion of the protocol must consider four
types of changes to the multicast routing tree topology. The
path of routers to the source can be altered, a retransmitter
can leave the session, a new host can join the session, or a
parent’s packet-loss rate may change.

To check whether the path to the source on the routing
tree has changed, each receiver runs a trace periodically.
However, a full trace is unnecessary; only a trace to the last
router common to itself and its parent’s path to the source
is required. The time-to-live (TTL) field of the MTRACE
query can be restricted by the known hop count to the last
common router. Any changes beyond that point will not
change the status of acceptability.

Tracer will adjust the tree of retransmitters with any
changes to the multicast routing tree, which may induce a lot
of traffic if the routing tree changes frequently. We believe
this is the right approach because Tracer was designed to
always pick what it sees as the best retransmitter for each
requester; as the routing tree changes, some retransmitters
are no longer the best choices.

If the MTRACE response does show that there has been
a change in the path, the receiver must discover if its parent
is still the closest acceptable node. The ERS-based path
advertisement state is entered again with the distance to
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Figure 9: A host at router C joins the session.

the parent as the starting TTL.

In the second case, where a retransmitter leaves the ses-
sion, the orphaned children start the protocol over, by send-
ing PATH_ADVs via an ERS.

In the third case, a new receiver may join a session be-
tween an existing parent and child pair. Figure 9 illustrates
this case, where a host at router C' has joined a session and
the host at router A is already the parent of the host at
router F'. After the host at C joins, it learns through an ad-
vertisement stage that the host at A is its best parent. Note
the difficulty that may arise: the host at C is now the best
parent for the host at F', but there is no way for the host
at F' or the host at C' to know this. The MTRACE query
from F to the source will not return a different path string,
and if the PATH_ADVs from the host at C' do not reach the
host at F' (since the TTL needed to reach A from C during
ERS is only 2), then neither C' nor F will act on forming
the relationship. To prevent this scenario, whenever a par-
ent takes on a new child, it sends a copy of the new child’s
PATH_ADV message to all its children (via multicast, if a
separate group exists). In the case of Figure 9, the host at
A would send a copy of the PATH_ADYV from the host at C
to the host at F, triggering a parent selection process at the
host at F. (This also repairs the situation where a host’s
PATH_ADV was lost before reaching a potential child.)

In the fourth case, the parent’s packet-loss rate may
reach an unacceptable level. Parents advertise such informa-
tion in the periodic IM_.YOUR_PARENT messages sent to
all children. If the parent’s packet loss rate is much greater
than the child’s, the child may elect to enter the adver-
tisement phase again to find a better parent. Note that the
comparison with the child’s rate is important: if both parent
and child both have increased rates, then probably the loss
is on a common path, and the parent may be already look-
ing for a new parent. Upon confirmation of a new parent,
a NOT_-YOUR_CHILD message terminates the relationship
with the old parent.

3.4 Failsafe operation

Because Tracer relies on the multicast path to remain sta-
ble, and assumes the correct operation of the MTRACE
mechanism, an extra safeguard prevents looping in the tree
if either of the two assumptions is violated. Each receiver
stores a level number, with the source initialized as zero and
receivers without parents initialized to infinity. The level of
each retransmitter increases by one as the tree grows from
the source. No receiver can advertise its path, or accept
children in the tree until the multicast trace has been con-
firmed by a second trace at some subsequent time (e.g., less
than a minute). If the paths remain unstable, or there is
no response to an MTRACE query for a number of retries,
receivers resort to a failsafe mode, and look for retransmit-
ters that are closest, by measuring the sum of the multicast
propagation delay from the parent to the child and the uni-
cast propagation delay from the child to the parent (just as
STORM-Tracer does in Section 4.2). To ensure loop-free op-

eration, no requester can join a retransmitter with a lower-
level designation (ties are broken by sorting IP addresses).
Once a join is made, then a child takes on its parent’s level
number plus one. This is the only way a child may change
its level. Increases in level are forwarded down the tree by
a parent to its children. It is straight forward to show that
loop freedom is achieved, because the level numbers render a
complete ordering along the multicast tree from the source.

3.5 Improving the Efficiency of Tracing

The MTRACE portion of IGMP is currently under revision
as a separate entity [2], focusing on using MTRACE as a
diagnostic tool for individual receivers of a multicast group.
Accordingly, the revision aims to avoid the scenario where
the source (and root) of a routing tree initiates a trace that
is multicast to all receivers. Conversely, because Tracer re-
quires all receivers to trace their path, it would be more effi-
cient to initiate traces from the source that are multicast to
the receivers. As the source’s packet traverses the multicast
tree, the path would be recorded in the data portion of the
packet. Rather than each receiver periodically initiating an
MTRACE query, Tracer would instead require each source
to periodically trace the paths to the receiver set. Then, if
a receiver detects a change in the path past the last router
common to its parent, it begins the maintenance portion of
the protocol. We are not suggesting that the ability for a
single receiver to trace its path from the source be removed,
rather just that source-based multicast tracing be added to
IGMP.

While shared-tree multicast routing protocols, like Or-
dered Core Based Trees (OCBT) [21], are not in wide use in
the Internet, we expect some MTRACE mechanism will be
included when they are prevalent. This section deals with
issues that arise.

The MTRACE mechanism is built on the assumption
that all routers know the interface that leads to the source,
which is also the root of the routing tree. In a shared tree, it
is not clear through which interface an arbitrary source can
be reached and the MTRACE mechanism, as it is defined
now, will not work. There are two solutions to this prob-
lem. The first is to simply perform multicast traces that
are initiated from each source, as proposed. The second is
for each source to trace the path to the root (i.e., “core”
or “rendez-vous point”) of the shared tree. Each receiver
can then trace its path to any source by tracing its path
to the root, and finding the common router for a particular
source. The two routes are spliced at the common router
to find the path between source and receiver. The first so-
lution is obviously more efficient for multiple receivers and
sources, but the second solution is useful as a diagnostic tool
for individual receiver-source pairs.

4 Using Tracer As a Component of Larger Protocols

The set of proposed reliable multicast protocols to date can
be categorized based to how each protocol handles error con-
trol and congestion control. Error-control protocols can be
further divided by considering whether they provide com-
plete recovery from packet loss at the expense of delay, or
whether they provide low-delay, deadline-oriented delivery
at the expense of complete recovery from packet loss. Both
classes of error-control protocols can benefit from forward
error correction (FEC) schemes, and many such schemes
have been proposed recently (e.g.,[14, 15])



Tracer’s organization of the receiver set is topology-based,
and therefore can be considered as a replacement component
for any reliable multicast protocol that needs to organize re-
ceivers according to packet-loss correlation. The rest of this
section describes how Tracer can be used as a component
of representative examples of complete-recovery protocols,
deadline-oriented protocols, and congestion-control proto-
cols.

4.1 Grouping by Topology with Tracer

Currently, RMTP statically selects designated receivers (DR)
to supply retransmissions to the other receivers. A receiver’s
choice of DR (i.e., its parent) is chosen before the session be-
gins, but is updated automatically during the session should
the DR fail.

Adding Tracer as a component to RMTP so as to handle
auto-selection of DRs for each receiver requires no modifica-
tions to Tracer, and Tracer has no effect on the error control
mechanisms designed for RMTP. The caveat is that, because
receivers can change DRs during the session, aggregate Acks
must be used in order to ensure complete error recovery,
which are Acks that start from the bottom of the receiver
tree and are aggregated towards the top?. Aggregate Acks
are required for tree-based complete recovery protocols that
make changes to the topology of the receiver-tree during the
session [11].

Tracer could also be used as a component of the SRM
protocol. Rather than performing Nack-avoidance between
all receivers, Tracer could be used to form separate groups
of receivers, organized in a tree structure, where Nacks and
Nack-avoidance timers remain local to each group. Nacks
would be forwarded up the tree to the source; retransmitters
that have already received the missing data correctly could
subcast a repair down the routing tree.

4.2 Grouping by Deadlines with Tracer

Because Tracer is designed to multicast retransmissions, it
is useful as a resilient multicast protocol. In other words, if
an application does not require 100% of the data, such as
in audio or video services where some loss is tolerable, the
emphasis of a reliable protocol may be placed on getting as
much of the data as possible before a deadline passes. Mul-
ticast retransmissions can lower average packet delay [18],
which is desirable for the real-time streaming applications
that resilient multicast protocols are designed to support.

In this situation, retransmitters should be chosen based
on what percentage of the data is received correctly for a
given time scale. This approach was first proposed in the
STORM protocol and was called resilient multicast. For
example, for a requester that must receive all data within
130ms, a retransmitter that receives 50% of the data within
100ms, and 65% within 300ms, is actually a better choice
than another retransmitter that receives 10% of the data
within 100ms and 100% within 300ms (assuming they are
both within 10ms of the requester).

The STORM protocol [22] relies on unicast retransmis-
sions, but Tracer’s approach to building the tree of retrans-
mitters can be adapted to the resilient multicast model,
with the advantage of multicast retransmissions. Just as
in STORM, a STORM-Tracer combination evaluates each
retransmitter based on what percentage of the packets can

2RMTP does not specify aggregate Acks explicitly, but the Reli-
able Multicast File Transfer Protocol (RMFTP), an application based
on RMTP, does already use aggregate Acks.
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Figure 10: Determining the multicast propagation delay be-
tween hosts

be received at the requester before the requester’s buffer
runs out. While the original STORM protocol measures
the unicast delay, STORM-Tracer retransmitters determine
the percentage of packets it has received correctly from the
source within time t+ B — (M +d), where t is the average de-
lay of packet sent from the source to the requester, B is the
buffer size of the requester (in time units), M is the multi-
cast propagation delay between retransmitter and requester
(measured with PATH_ADV messages) and d is the unicast
propagation delay between requester and retransmitter. The
roundtrip time on the multicast tree is not needed because
Acks and Nacks are sent unicast to retransmitters. If sub-
cast is to be used, then PATH_ADVs should be subcast.
The tradeoff with this approach, as opposed to the original
version of STORM, is that determining the suitability of a
potential retransmitter requires multicast traffic.

The measurement of M +d requires three steps, and Fig-
ure 10 illustrates the process. Each multicast PATH_ADV
includes a timestamp, a (step 1 in Figure 10). Requesters
then echo a in their IM_YOUR_CHILD message sent uni-
cast to the advertiser, which the advertiser receives at time
b (step 2). The advertiser is then able to determine M +d =
b—a. This value is returned to the requester along with the
percentage of packets received correctly by time b — a (step
3). (Time spent processing at the respective hosts should
be subtracted from the cumulative time.)

4.3 Grouping by Congestion with Tracer

Work by De Lucia and Obraczka [3] groups receivers to-
gether with the same state of congestion. Each group has
a representative that is ideally the most upstream receiver
among those in the group, because such a receiver is most
likely located ahead of congested links. The main problem
in congestion control is for a multicast flow to share the
bandwidth of a congested link with TCP flows in a fair way.
TCP reacts to congestion within a roundtrip time and mul-
ticast protocols need to do the same thing. However, there
may be multiple bottlenecks in a multicast flow.

In De Lucia and Obraczka’s scheme, the source builds
the representative set by choosing the receiver that has not
Nacked for the longest period of time, because it would seem
it has the least congestion. This approach avoids timer traf-
fic and is simple to implement, but cannot guarantee that
the choice of representative is optimal, because Nacks and
Acks may get lost during times of congestion. Handley has
proposed an extension to this approach [6] based on the no-
tion of relays and subgroups. Relays are receivers that buffer
data from the source (or another relay) and re-multicast the
data at a slower rate to a subgroup of receivers. Because
each member of the subgroup leaves the main multicast
group, the relay acts as a representative of the subgroup on



Figure 11: Partial topology of CAIRN.

the main multicast group, sending Acks and Nacks towards
the source. Group formation is based on Nack-avoidance
algorithm specified by the SRM [5] protocol. If a receiver
notices that other receivers’ Nacks are for the same or a
superset of packets, the receiver reduces its Nack backoff
timer. If the other receiver’s Nacks are not duplicates, or
are for a subset of lost packets, then the examining receiver
increases its backoff timer. The hope is that receivers with
lower packet loss than sites with which they have correlated
packet-loss will Nack sooner and become representatives.
To find a relay, representatives start an ERS to other re-
ceivers, looking for a member with significantly lower loss
rates. Once willing receivers are found, the representative
starts a new multicast subgroup; the relay site is now pri-
mary source of data for all subgroup members, as they leave
the source’s original group.

Tracer’s selection of retransmitters for each receiver is
different than the non-deterministic approaches employed
by De Lucia and Obraczka’s technique and Handley’s tech-
nique. Tracer, as we have defined it in Section 3, builds
relationships among receivers deterministically, such that a
receiver can always find another receiver upstream from con-
gestion.

5 Experimental Results

To test how well topological tracing predicts packet-loss cor-
relation, we recorded data on the Collaborative Advanced
Internet Research Network (CAIRN), a research network of
about 20 routers spanning the continental United States,
consisting mainly of workstations running SunOS 4.1 and
PCs running FreeBSD. We chose to use CAIRN rather than
a few sundry hosts across the Internet because of the open
access to a large number of hosts, and because we were able
to collect data at almost all points in the multicast rout-
ing tree, rather than just the end points. Figure 11 shows
the topology of the 13 routers in CAIRN we used to record
multicast data.

To see how packet loss was correlated over the network,
we sent a steady stream of data from the ucsc router to
the 12 other routers in Figure 11. We performed six sepa-
rate sessions for manageability, and we were able to collect
data at the shaded nodes of the routing tree regarding which
packets were received; in some sessions, data was not able to
be collected at a couple hosts. Figure 12 shows the packet
loss per-session for each host. In all 54,500 packets of about
512K each, or about 27 megabytes, of data were multicast
from the source.

Table 13 correlates each host’s packet-loss with every
host that is a direct ancestor, an indirect ancestor, an in-
direct descendent according to its path in the routing tree,
aggregating all sessions. Each host was compared with an-
other for only those sessions they had in common. The figure
lists for each compared host, the packet-loss correlation, the

no. of 512K packets multicast
4,013 | 3,732 | 3,784 | 13,548 | 19,707 | 9,721
sri | 0.0% | 0.0% [ 0.0% | 0.0% 0.2% 0.0%
parc | 21.4 24.2 29.8
ames | 23.5 26.6 31.4

sun | 23.5 26.7 314 — 72.0 72.0
Iblpc | 21.4 24.2 29.8 42.0 40.5 59.7
isiepc | 21.4 24.2 29.8 42.0 40.5 59.7

isiepc2 | 21.4 24.2 29.8 42.0 40.6 59.7
mit | 21.4 24.2 29.8 43.3 55.6 59.7
udel | 43.5 36.6 35.1 68.0 84.7 82.8
darpa | 21.4 24.2 30.7 52.8 67.6 71.5

Figure 12: Packet loss data for all hosts for each session.

ranking of the host as Tracer would have chosen retransmit-
ters, the distance between the two hosts, and the number of
routers they share in common on the path from the source.

For example, 1blpc is compared against four hosts. Both
sri and parc are direct ancestors of 1blpc, i.e., they lie di-
rectly on the path to the source from 1blpc. As we would
expect, 100% of the packets lost at sri and parc were also
lost at 1blpc. Ames is two hops from 1blpc and has two
hops in common on the path from the source, presented as
“(2:2)”; 93% of the packets lost at ames were also lost at
lblpc. Ames is in boldface because it is the host that 1blpc
would choose as a retransmitter if no directly acceptable
host was available. (Note because they are actually equidis-
tant from the source and each other, the tie between ames
and 1blpc is broken alphabetically; ames would not choose
1blpc as a parent.) Sun is an indirect descendant of 1blpc
because they share a common path from the source, but
1blpc is closer to the source; 69% of the packets lost at sun
were lost at 1blpc.

As expected, the acceptability algorithm chooses the host
with the highest packet-loss correlation (when ignoring di-
rectly acceptable hosts) in all cases, and the ordering of the
other hosts based on acceptability exactly matches the or-
dering based on packet-loss correlation. Therefore, we con-
clude that tracing is a good predictor of packet-loss correla-
tion.

The goal of choosing retransmitters based on acceptabil-
ity is not to find a retransmitter with the lowest packet loss.
Rather, the goal is to find the retransmitter with the highest
packet-loss correlation, and that is the closest to the source.
When this is the case, the parent will probably lose a packet
that the child has lost.

6 Conclusion

Tracer addresses both error control and congestion control
aspects of a multicast protocol, and is applicable to reli-
able multicast protocols providing complete error recovery,
as well as reliable multicast protocols providing deadline-
oriented recovery. While previous reliable multicast proto-
cols attempt to discover the topology of the underlying mul-
ticast tree by measuring hop counts or propagation delay,
Tracer provides a mechanism that uses currently available
router functions to record the exact multicast route from
the source to each receiver. Because the path is known,
Tracer is able to select a retransmitter for each receiver
such that packet-loss correlation, is maintained between the
hosts. Tracer is the first technique that organizes the re-
ceiver set and maintains packet-loss correlation withhout
changes to the routers. Therefore, Nacks for missing data



Host Direct Indirect Indirect
Ancestors Ancestors Descendants
sri
parc sri 100%
ames sri 100 Iblpc (2:2) 100%
parc 100 isiepc (4:2) 100
isiepc2 (5:2) 100
mit (5:2) 100
darpa (6:2) 99
udel (6:2) 68
Iblpc sri 100 [I. ames (2:2) 93% sun (3:3) 69
parc 100
sun sri 100 [I. Iblpc (3:2) 100 isiepc (5:2) 100
parc 100 isiepc2 (6:2) 100
ames 100 mit (6:2) 97
darpa (7:2) 92
udel (7:2) 80
isiepc sri 100 [I. ames (4:2) 93
parc 100 |[2. sun (5:2) 69
Iblpc 100
isiepc2 sri 100 [I. ames(5:2) 93 darpa (3:5) 73
parc 100 |2. sun (6:2) 69 mit (2:5) 88
Iblpe 100
isiepc 100
mit sri 100 [1. isiepc2 (2:5) 100 udel (3:5) 64
parc 100 |2. ames (5:2) 93 darpa (3:5) 82
Iblpc 100 |3. sun (6:2) 78
isiepc 100
udel sri 100 [1. mit(3:5) 97
parc 100 |2. darpa(4:5) 96
Iblpc 100 |3. ames (6:2) 97
isiepc 100 |4. sun(7:2) 95
isiepc2 100
darpa sri 100 [1. isiepc2 (3:5) 100 udel (4:5) 76
parc 100 |2. mit (3:5) 100
Iblpc 100 |3. ames (6:2) 93
isiepc 100 |4. sun (7:2) 88

Figure 13: Observed packet-loss correlation on CAIRN. Ac-
ceptability ties are broken alphabetically.

are sent to retransmitters who are closer to the source, and
therefore have a better chance of having the data and will
receive the retransmission faster. Furthermore, Tracer is
the first scheme to identify the last common node between
retransmitters and requester so that subcast transmissions
can become a practical solution, with only small local addi-
tions to routers. Accurately organizing receivers according
to packet-loss correlation ensures that retransmissions can
be multicast because only nodes expecting the retransmis-
sion lie along the multicast subtree. In addition, Tracer
provides elegant mechanisms to isolate congested subtrees
and elect representatives, or relays for efficient congestion
control in reliable multicast protocols.

We have identified that extending IGMP with MTRACE
packets multicast from sources to receivers is a desirable
feature that makes Tracer much more scalable. We believe
that such a feature can be used by other multicast protocols.

We have implemented Tracer as a stand alone application
for FreeBSD computers. The executable is available from
http://www.cse.ucsc.edu/research/ccrg/software/tracer.html.
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